Тригонометрија

Од Википедија, слободна енциклопедија

Тригонометријата (од Грчкиот збор trigonon=три агли и metro=мерка) е гранка на математиката која се справува со агли, триаголници и тригонометриски функции како што се синус, косинус and тангенс. Има врска и со геометрија, иако има несогласувања за нивниот сооднос; за некои тригонометријата е само дел од геометријата.

[уреди] За тригонометријата

Правоаголен триаголник

Тригонометриските функции се дефинирани преку правоаголни триаголници. Тоа се триаголници со еден прав агол (90 степени или π/2 радијани). Најдолгата страна на триаголникот е онаа спроти правиот (најголемиот) агол и се нарекува хипотенуза.

Ако се пресмета количникот од должината на спротивната страна на аголот A и хипотенузата, ќе се добие број помеѓу 0 и 1 кој зависи од А. Тој се нарекува синус од аголот A и се пишува sin(A) или sinA. Слично, може да се дефинира и косинус од A како количник од должината на налегнатата страна на аголот А и хипотенузата.


\sin A = {\mbox{opp} \over \mbox{hyp}}  \qquad \cos A = {\mbox{adj} \over \mbox{hyp}}

(каде opp = спротивна страна, adj = налегната, hyp = хипотенуза)

Овие се најбитните тригонометриски функции, додека други можат да се дефинираат со количници на должините на другите страни, но исто така можат да се изразат преку синус и косинус. Тие се тангенс, секанс, котангенс и косеканс.

\tan A = {\sin A \over \cos A} = {\mbox{opp} \over \mbox{adj}}   \qquad \sec A = {1 \over \cos A}   = {\mbox{hyp} \over \mbox{adj}}
\cot A = {\cos A \over \sin A} = {\mbox{adj} \over \mbox{opp}}  \qquad \csc A = {1 \over \sin A}   = {\mbox{hyp} \over \mbox{opp}}

(каде opp = спротивна страна, adj = налегната, hyp = хипотенуза)

  • Ознаката за тангенс, во Македонија обично се пишува како tg наместо tan, а за котангенс - ctg, наместо cot.

До сега, тригонометриските функции се дефинирани за агли помеѓу 0 и 90 степени (0 и π/2 радијани). Со користење на единечна кружница, тие можат да се прошират за позитивни и негативни аргументи (види тригонометриски функции).

[уреди] Видете исто така

  • Тригонометриски идентитети
  • Trigonometry--What is is good for?     Прв од 7 дела за брз курс на средношколско ниво (на англиски).