গণিত
উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
গণিত (ইংরেজি ভাষায়: Mathematics) পরিমাণ, সংগঠন, পরিবর্তন ও স্থান বিষয়ক গবেষণা। গণিতে সংখ্যা ও অন্যান্য পরিমাপযোগ্য রাশিসমূহের মধ্যকার সম্পর্ক বর্ণনা করা হয়। গণিতের সার্বজনীন ভাষা ব্যবহার করে বিজ্ঞানীরা একে অপরের সাথে ধারণার আদান-প্রদান করেন। গণিত তাই বিজ্ঞানের ভাষা।
১৭শ শতক পর্যন্তও কেবল পাটীগণিত, বীজগণিত ও জ্যামিতিকে গাণিতিক শাস্ত্র হিসেবে গণ্য করা হত। সেসময় গণিত দর্শন ও বিজ্ঞানের চেয়ে কোন পৃথক শাস্ত্র ছিল না। গাণিতিক শাস্ত্রগুলির গোড়াপত্তন করেন প্রাচীন গ্রিকেরা, মুসলিম পণ্ডিতেরা এগুলি সংরক্ষণ করেন, এবং খ্রিস্টান পুরোহিতেরা মধ্যযুগে এগুলি ধরে রাখেন। ১৭শ শতকে এসে আইজাক নিউটন ও গটফ্রিড লাইবনিৎসের ক্যালকুলাস উদ্ভাবন এবং ১৮শ শতকে ওগুস্তাঁ লুই কোশি ও তাঁর সমসাময়িক গণিতবিদদের উদ্ভাবিত কঠোর গাণিতিক বিশ্লেষণ পদ্ধতিগুলির উদ্ভাবন গণিতকে একটি একক, স্বকীয় শাস্ত্রে পরিণত করে। তবে ১৯শ শতক পর্যন্তও কেবল পদার্থবিজ্ঞানী, রসায়নবিদ ও প্রকৌশলীরাই গণিত ব্যবহার করতেন।
১৯শ শতকের শুরুতে তাত্ত্বিক পদার্থবিজ্ঞানের যে আধুনিক ধারা সূচিত হয়, সে-সংক্রান্ত গবেষণাগুলির ফলাফল প্রকাশের জন্য জটিল গাণিতিক মডেল উদ্ভাবন করা হয়। বিশুদ্ধ গণিতের বিভিন্ন ক্ষেত্রে গবেষণায় জোয়ার আসে। অন্যদিকে ২০শ শতকের মাঝামাঝি সময়ে কম্পিউটারের আবিষ্কার এ-সংক্রান্ত সাংখ্যিক পদ্ধতিগুলির গবেষণা বৃদ্ধি করে।
সূচিপত্র |
[সম্পাদনা] গণিতের প্রধান ক্ষেত্রসমূহ
[সম্পাদনা] পরিমাণ
পরিমাণ বিষয়ক গবেষণার ভিত্তি হচ্ছে সংখ্যা। শুরুতেই আলোচিত হয় স্বাভাবিক সংখ্যা ও পূর্ণ সংখ্যা এবং এদের উপর সম্পন্ন বিভিন্ন গাণিতিক প্রক্রিয়া বা অপারেশন আলোচিত হয় পাটীগণিতে। পূর্নসংখ্যাগুলির গভীরতর ধর্মগুলি আলোচিত হয় সংখ্যাতত্ত্ব শাখায়। ফের্মার শেষ উপপাদ্য এই শাখার একটি বিখ্যাত ফলাফল। এখনও সমাধান হয়নি এরকম দুইটি সমস্যা হচ্ছে দ্বৈত মৌলিক সংখ্যা অনুমান এবং গোল্ডবাখের অনুমান।
আরও উন্নত সংখ্যাব্যবস্থায় পূর্ণসংখ্যাগুলি মূলদ সংখ্যার উপসেট হিসেবে পরিগণিত হয়। মূলদ সংখ্যাগুলি আবার বাস্তব সংখ্যার অন্তর্গত। বাস্তব সংখ্যাগুলি অবিচ্ছিন্ন রাশি বর্ণনা করতে ব্যবহার করা হয়। বাস্তব সংখ্যাগুলিকে আবার জটিল সংখ্যাতে সাধারণীকৃত করা হয়। জটিল সংখ্যাগুলিকে কোয়ার্টানায়ন ও অক্টোনায়োন-বিশিষ্ট সংখ্যাব্যবস্থায় সম্প্রসারিত করা যায়।
- সংখ্যা • Hypercomplex numbers • Quaternions • Octonions • Sedenions • Hyperreal numbers • Surreal numbers • পূরণবাচক সংখ্যা • অঙ্কবাচক সংখ্যা • p-adic numbers • Integer sequences • গাণিতিক ধ্রুবক • Number names • অসীম • Base
[সম্পাদনা] গঠন
- আকার, প্রতিসাম্য এবং গাণিতিক গঠন সংক্রান্ত আলোচনা।
- Monoids • Rings • ফীল্ড • রৈখিক বীজগণিত • বীজগাণিতিক জ্যামিতি • সার্বজনীন জ্যামিতি
[সম্পাদনা] স্থান
- স্থান নিয়ে গবেষণা মানব মনে গণিতের বীজ বপন করেছিল।
-
জ্যামিতি ত্রিকোণমিতি সমাকলন জ্যামিতি টপোগণিত ফ্র্যাক্টাল জ্যামিতি
- বীজগাণিতিক জ্যামিতি • স্থানাংক পদ্ধতি • অন্তরক টপোগণিত • বীজগাণীতিক টপোগণিত • রৈখিক বীজগণিত • গুচ্ছবিন্যাসতাত্ত্বিক জ্যামিতি • বহুধা
[সম্পাদনা] পরিবর্তন
- গাণিতিক ফাংশন এবং সংখ্যার মানসমূহের পরিবর্তনের প্রকাশ।
-
ক্যালকুলাস ভেক্টর ক্যালকুলাস ব্যবকলনীয় সমীকরণ Dynamical systems Chaos theory
- গাণিতিক বিশ্লেষণ • বাস্তব বিশ্লেষণ • জটিল বিশ্লেষণ • Functional analysis • বিশেষ ফাংশন • Measure theory • ফুরিয়ার বিশ্লেষণ • পরিবর্তনশীল ক্যালকুলাস
[সম্পাদনা] ভিত্তি এবং পদ্ধতি
- গণিতের স্বভাব ও ধর্ম বুঝার জন্য সহায়ক।
-
গাণিতিক যুক্তি সেট তত্ত্ব Category theory
- গণিতের ভিত্তি • গণিতের দর্শন • প্রাতিষ্ঠানিকতা • Constructivism • Proof theory • Model theory • Reverse mathematics
[সম্পাদনা] বিচ্ছিন্ন গণিত
-
চিত্র:Fsm moore model door control.jpg Combinatorics Theory of computation Cryptography লেখ তত্ত্ব
- Computability theory • Computational complexity theory • Information theory
[সম্পাদনা] ফলিত গণিত
- ফলিত গণিত গণিতের সাহায্যে বাস্তব বিশ্বের বিভিন্ন সমস্যা সমাধান নির্দেশ করে।
- গাণিতিক পদার্থবিজ্ঞান • বলবিদ্যা • Mathematical fluid dynamics • Numerical analysis • সেরা-অনুকূলকরণ • সম্বাব্যতা • পরিসংখ্যান • গাণতিক অর্থনীতি • বাণিজ্যিক গণিত • Game theory • গাণিতিক জীববিজ্ঞান • Cryptography • Operations research
[সম্পাদনা] গুরুত্বপূর্ণ উপপাদ্য
- দেখুন উপপাদ্যের তালিকা
- পীথাগোরাসের উপপাদ্য • ফার্মির ভাগশেষ উপপাদ্য • Gödel's incompleteness theorems • Fundamental theorem of arithmetic • Fundamental theorem of algebra • Fundamental theorem of calculus • Cantor's diagonal argument • চার বর্ণ উপপাদ্য • Zorn's lemma • Euler's identity • Gauss–Bonnet theorem • Quadratic reciprocity • Riemann–Roch theorem.
[সম্পাদনা] Important conjectures
See list of conjectures for more
- These are some of the major unsolved problems in mathematics.
- গোল্ডবাখ অনুমান • Twin Prime Conjecture • Riemann hypothesis • Poincaré conjecture • কোলাজ অনুমান • P=NP? • open Hilbert problems.
[সম্পাদনা] ইতিহাস ও গণিতবিশ্ব
গণনা করা ছিল আদিমতম গাণিতিক কর্মকাণ্ড। আদিম মানুষেরা পশু ও বাণিজ্যের হিসাব রাখতে গণনা করত। আদিম সংখ্যা ব্যবস্থাগুলি প্রায় নিশ্চিতভাবেই ছিল এক বা দুই হাতের আঙুল ব্যবহার করে সৃষ্ট। বর্তমানের ৫ ও ১০-ভিত্তিক সংখ্যা ব্যবস্থার বিস্তার এরই সাক্ষ্য দেয়। মানুষ যখন সংখ্যাগুলিকে বাস্তব বস্তু থেকে পৃথক ধারণা হিসেবে গণ্য করা শিখল এবং যোগ, বিয়োগ, গুণ, ভাগ --- এই চারটি মৌলিক অপারেশন বা প্রক্রিয়া উদ্ভাবন করল, তখনই পাটীগণিতের যাত্রা শুরু হল। আর জ্যামিতির শুরু হয়েছিল রেখা ও বৃত্তের মত সরল ধারণাগুলি দিয়ে। গণিতের পরবর্তী উন্নতির জন্য চলে যেতে হবে খ্রিস্টপূর্ব ২০০০ অব্দে, যখন ব্যাবিলনীয় ও মিশরীয় সভ্যতা বিকাশ লাভ করেছিল।
প্রাচীন মেসোপটেমিয়ার ব্যাবিলনীয়রা এবং নীল নদের অববাহিকায় প্রাচীন মিশরীয়রা সুশৃঙ্খল গণিতের প্রাচীনতম নিদর্শন রেখে গেছে। তাদের গণিতে পাটীগণিতের প্রাধান্য ছিল। জ্যামিতিতে পরিমাপ ও গণনাকে প্রাধান্য দেয়া হয়, স্বতঃসিদ্ধ বা প্রমাণের কোন নিদর্শন এগুলিতে পাওয়া যায় না।
[সম্পাদনা] প্রাচীন ব্যাবিলনীয়দের গণিত
ব্যাবিলনিয়ার গণিত সম্পর্কে আমরা জানতে পারি এই সভ্যতার নিদর্শনবাহী কাদামাটির চাঙড় থেকে, যেগুলির উপর ব্যাবিলনীয়রা কীলক আকৃতির খোদাই করে করে লিখত। এই লেখাগুলিকে কিউনিফর্ম বলা হয়। সবচেয়ে প্রাচীন চাঙড়গুলি খ্রিস্টপূর্ব ৩০০০ অব্দ সালের বলে ধারণা করা হয়। খোদাইগুলির বেশির ভাগ গণিতই ছিল বাণিজ্য বিষয়ক। ব্যাবিলনীয়রা অর্থ ও পণ্যদ্রব্য আদানপ্রদানের জন্য পাটীগণিত ও সরল বীজগণিত ব্যবহার করত। তারা সরল ও যৌগিক সুদ গণনা করতে পারত, কর গণনা করতে পারত, এবং রাষ্ট্র, ধর্মালয় ও জনগণের মধ্যে সম্পদ কীভাবে বন্টিত হবে তা হিসাব করতে পারত। খাল কাটা, শস্যাগার নির্মাণ ও অন্যান্য সরকারী কাজকর্মের জন্য পাটীগণিত ও জ্যামিতির ব্যবহার হত। শস্য বপন ও ধর্মীয় ঘটনাবলির জন্য পঞ্জিকা নির্ধারণেও গণিতের ব্যবহার ছিল।
বৃত্তকে ৩৬০টি ভাগে বা ডিগ্রীতে বিভক্ত করা এবং প্রতি ডিগ্রী ও মিনিটকে আরও ৬০টি ভাগে বিভক্ত করার রীতি ব্যাবিলনীয় জ্যোতির্বিজ্ঞান থেকে এসেছে। ব্যাবিলনীয়রাই একেক দিনকে ২৪ ঘণ্টায়, প্রতি ঘন্টাকে ৬০ মিনিট ও প্রতি মিনিটকে ৬০ সেকেন্ডে ভাগ করে। তাদের সংখ্যা ব্যবস্থা ছিল ৬০-ভিত্তিক। ১-কে একটি কীলকাকৃতি খাঁজ দিয়ে নির্দেশ করা হত এবং এটি বারবার লিখে ৯ পর্যন্ত নির্দেশ করা হত। ১১ থেকে ৫৯ পর্যন্ত সংখ্যাগুলি ১ এবং ১০-এর জন্য ব্যবহৃত চিহ্ন ব্যবহার করে নির্দেশ করা হত। ৬০-এর চেয়ে বড় সংখ্যার জন্য ব্যাবিলনীয়রা একটি স্থাননির্দেশক চিহ্ন ব্যবহার করত। স্থানিক মানের এই ধারণার উদ্ভাবন গণনাকে অনেক এগিয়ে দেয়। এর ফলে একই প্রতীক বিভিন্ন স্থানে বসিয়ে একাধিক মান নির্দেশ করা সম্ভব হয়। ব্যাবলিনীয়দের সংখ্যা ব্যবস্থায় ভগ্নাংশও নির্দেশ করা যেত। তবে তাদের ব্যবস্থায় শূন্য ছিল না, এবং এর ফলে দ্ব্যর্থতার সৃষ্টি হয়।
ব্যাবিলনীয়রা বিপরীত সংখ্যা, বর্গ সংখ্যা, বর্গমূল, ঘন সংখ্যা ও ঘনমূল, এবং যৌগিক সুদের সারণী প্রস্তুত করেছিল। তারা ২-এর বর্গমূলের একটি ভাল আসন্ন মান নির্ধারণ করতে পেরেছিল। কিউনিফর্ম চাঙড়গুলি থেকে আরও প্রমাণ পাওয়া গেছে যে ব্যাবিলনীয়রা দ্বিঘাত সমীকরণের সমাধানের সূত্র আবিষ্কার করেছিল এবং তারা দশটি অজানা রাশি বিশিষ্ট দশটি সমীকরণের ব্যবস্থা সমাধান করতে পারত।
খিস্টপূর্ব ৭০০ অব্দে এসে ব্যাবিলনীয়রা গণিত ব্যবহার করে চাঁদ ও গ্রহসমূহের গতি নিয়ে গবেষণা আরম্ভ করে। এর ফলে তারা গ্রহগুলির দৈনিক অবস্থান পূর্বাভাসে সক্ষম হয়, যা জ্যোতির্বিজ্ঞান ও জ্যোতিষশাস্ত্র --- দুই ক্ষেত্রেই তাদের কাজে আসে।
জ্যামিতিতে ব্যাবিলনীয়রা সদৃশ ত্রিভুজের একই বাহুগুলির মধ্যে সমানুপাতিকতার সম্পর্কের ব্যাপারে অবহিত ছিল। তারা পীথাগোরাসের উপপাদ্য ব্যবহার করে সমস্যা সমাধান করতে পারত এবং অর্ধবৃত্তের উপর অংকিত কোণ যে সমকোণ হয়, তা জানত। তারা সরল সমতলীয় বিভিন্ন চিত্র যেমন সুষম বহুভুজ, ইত্যাদির ক্ষেত্রফলের সূত্র এবং সরল ঘনবস্তুগুলির আয়তনের সূত্র বের করেছিল। তারা পাই-এর জন্য ৩-কে আসন্ন মান হিসেবে ব্যবহার করত।
[সম্পাদনা] প্রাচীন মিশরীয়দের গণিত
মিশরীয়রা তাদের স্তম্ভগুলিতে হায়ারোগ্লিফের মাধ্যমে সংখ্যা অংকিত করেছিল, কিন্তু মিশরীয় গণিতের আসল নিদর্শন হল আনুমানিক ১৮০০ খ্রিস্টপূর্বাব্দের দুইটি প্যাপিরাস। এগুলিতে পাটীগণিত ও জ্যামিতির নানা সমস্যা আছে, যার মধ্যে বাস্তব সমস্যা যেমন নির্দিষ্ট পরিমাণ মদ তৈরির জন্য কতটুকু শস্য লাগবে, এক জাতের শস্য ব্যবহার করে মদের যে মান পাওয়া যায়, অন্য জাতের শস্য কতটুকু কাজে লাগিয়ে সেই একই মান পাওয়া যায়, তার সমস্যা।
মিশরীয় বেতন নির্ণয়ে, শস্যক্ষেত্রের ক্ষেত্রফল ও শস্যাগারের আয়তন নির্ণয়ে, কর নির্ণয়ে ও নির্দিষ্ট কাঠামোর জন্য প্রয়োজনীয় ইটের সংখ্যা বের করতে গণিতকে কাজে লাগাত। এছাড়াও পঞ্জিকা গণনাতেও তারা গণিতভিত্তিক জ্যোতির্বিজ্ঞান ব্যবহার করত। পঞ্জিকার সাহায্যে তারা ধর্মীয় ছুটির তারিখ ও নীল নদের বার্ষিক প্লাবনের সময় নির্দেশ করতে পারত।
মিশরীয়দের সংখ্যা ব্যবস্থা ছিল ১০-ভিত্তিক। তারা ১০-এর বিভিন্ন ঘাতের জন্য ভিন্ন ভিন্ন হায়ারোগ্লিফ প্রতীক ব্যবহার করত। তারা ১-এর প্রতীক পাঁচবার লিখে ৫, ১০-এর প্রতীক ৬ বার লিখে ৬০, আর ১০০-র প্রতীক ৩ বার লিখে ৩০০ নির্দেশ করত। একসাথে এই প্রতীকগুলি ৩৬৫ নির্দেশ করত।
- গণিতের ইতিহাস • গণিতের ইতিহাসের তারিখ • গণিতবিদ তালিকা • ফিল্ডস্ মেডাল • অ্যাবেল পুরস্কার • Millennium Prize Problems (Clay Math Prize) • ইন্টারনেশনাল ম্যাথেম্যাটিক্যাল ইউনিয়ন • গণিতের প্রতিযোগিতাসমূহ • Lateral thinking • গাণিতিক শিক্ষা • গাণিতিক যোগ্যতা এবং লৈঙ্গিক ইস্যুসমূহ