Fermat tæl

Fram Wikipedian

In rīmcræftum, Fermat tæl, genemnod æfter Pierre de Fermat, þǣm þe hīe ærest hogde, is positif tæl mid scape:

F_{n} = 2^{2^n} + 1

þider n is unnegatif tæl. Þā ærest eahta Fermat talu sind (æfterfylgung A000215 on OEIS):

F0 = 21 + 1 = 3
F1 = 22 + 1 = 5
F2 = 24 + 1 = 17
F3 = 28 + 1 = 257
F4 = 216 + 1 = 65537
F5 = 232 + 1 = 4294967297 = 641 × 6700417
F6 = 264 + 1 = 18446744073709551617 = 274177 × 67280421310721
F7 = 2128 + 1 = 340282366920938463463374607431768211457 = 59649589127497217 × 5704689200685129054721

Gif 2n + 1 frumtæl is, man cynþ ācȳðan þæt n must bēon 2-miht. (Gif n = ab þæt 1 < a, b < n and b is ofertæl, man hæfþ 2n + 1 ≡ (2a)b + 1 ≡ (−1)b + 1 ≡ 0 (mod 2a + 1).)

For þǣm ǣlc frumtæl mid scape 2n + 1 is Fermat tæl, and þās frumtalu hātte Fermat frumtalu. Man wāt ǣnlīce fīf Fermat frumtalu: F0, ... ,F4.

Innungbred

[ādihtan] Basic properties

Þā Fermat talu āfylaþ þis recurrence relations

Fn = (Fn - 1 - 1)2 + 1
F_{n} = F_{n-1} + 2^{2^{n-1}}F_{0} \cdots F_{n-2}
F_{n} = F_{n-1}^2 - 2(F_{n-2}-1)^2
F_{n} = F_{0} \cdots F_{n-1} + 2

for n ≥ 2.

[ādihtan] See swelce eac

  • Mersenne frumtæl
  • Lucas's theorem
  • Proth's theorem
  • Pseudoprime
  • Primality test
  • Constructible tæl
  • Sierpinski tæl

[ādihtan] Ūtweardlican bendas:

[ādihtan] References

  • 17 Wordcræftas on Fermat talu: From Number Theory to Geometry, Michal Krizek, Florian Luca, Lawrence Somer, Springer, CMS Books 9, ISBN 0387953329 (Þis bóc hæfþ extensive list of references.)