ทฤษฎีบทของวิลสัน

จากวิกิพีเดีย สารานุกรมเสรี

ในคณิตศาสตร์, ทฤษฎีบทของวิลสัน (Wilson's Theorem) กล่าวว่า สำหรับจำนวนเฉพาะ p > 1,

(p-1)!\ \equiv\ -1\ (\mbox{mod}\ p)

(ดูเพิ่มเติมใน แฟกทอเรียล และ เลขคณิตมอดุลาร์ สำหรับความหมายของสัญกรณ์)

สารบัญ

[แก้] ประวัติ

[แก้] การพิสูจน์

ใช้ข้อเท็จจริงที่ว่า ถ้า p เป็นจำนวนเฉพาะคี่ แล้วเซต G = (Z/pZ)× = {1, 2, ... p − 1} จะอยู่ในรูปกรุปภายใต้การคูณมอดุโล pได้ นั่นหมายความว่า สำหรับแต่ละสมาชิก i ใน G จะมีสมาชิกผกผัน j ใน G ที่ทำให้ ij ≡ 1 (mod p) ได้อย่างเดียว. ถ้า ij (mod p) แล้วจะทำให้ i2 − 1 = (i + 1)(i − 1) ≡ 0 (mod p) จาก p เป็นจำนวนเฉพาะ ทำให้ i ≡ 1 หรือ −1 (mod p), นั่นคือ i = 1 หรือ i = p − 1.

หรือกล่าวได้ว่า 1 และ p − 1 เท่านั้น ที่เป็นตัวผกผันกับตัวเอง แต่สมาชิกตัวอื่นๆใน G จะมีตัวผกผันที่แตกต่างกัน ดังนั้น ถ้าจับคู่สมาชิกตัวที่ผกผันกันใน G และคูณทั้งหมดเข้าด้วยกัน จะได้ผลคูณเท่ากับ -1 ตัวอย่างเช่น ถ้า p = 11 จะได้

10! = 1(10)(2 \cdot 6)(3 \cdot 4)(5 \cdot 9)(7 \cdot 8) \ \equiv\ -1\ (\mbox{mod}\ 11)

สำหรับบทกลับ ให้ n เป็นจำนวนประกอบ ที่ทำให้ (n − 1)! ≡ −1 (mod p), ดังนั้น n จะมีตัวหารแท้ d ซึ่ง 1 < d < n ดังนั้น d หาร (n − 1)! ลงตัว แต่ d หาร (n − 1)! + 1 ลงตัวด้วย ดังนั้น d หาร 1 ลงตัว เกิดข้อขัดแย้ง

[แก้] การประยุกต์

[แก้] บทกลับ

บทกลับของทฤษฎีบทของวิลสันกล่าวไว้ว่า สำหรับจำนวนประกอบ n > 5

(n − 1)! หารด้วย n ลงตัว

เหลือกรณีที่ n = 4 ซึ่ง 3! สมภาคกับ 2 โมดุโล 4

  ทฤษฎีบทของวิลสัน เป็นบทความเกี่ยวกับ คณิตศาสตร์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น
ข้อมูลเกี่ยวกับ ทฤษฎีบทของวิลสัน ในภาษาอื่น สามารถหาอ่านได้จากเมนู ภาษาอื่น ๆ ด้านซ้ายมือ