რჩეული სტატია
|
ალბათობის თეორია არის მათემატიკის ნაწილი შემთხვევითი პროცესების და მათი მატემატიკური მოდელირების შესახებ. მისი სტანდარტული ამოცანაა მოცემული შემთხვევითი პროცესის მომცველი ცდისთვის დაადგინოს რაიმე კონკრეტული "მოვლენის" მოხდენის ალბათობა.
მოცემული ცდის პირობებში ყოველ A "მოვლენას", ხდომილებას (ე. ი. ცდის კონკრეტული შედეგით დასრულებას) შეესაბამება გარკვეული რიცხვი P(A), 0-დან 1-მდე ინტერვალში – A ხდომილების ალბათობა. ისე რომ, თუ P(A) = 0, მაშინ ცდა A ხდომილებით არ დასრულდება; რაც მეტია ხდომილების ალბათობა მით მეტია ხდომილების მოხდენის შესაძლებლობა; ხოლო თუ P(A) = 1, მაშინ ცდის შედეგი აუცილებლად იქნება ხდომილება A.
მაგალითად, დავუშვად ცდა მდგომარეობს კამათლის გაგორებაში. ეს ცდა შეიძლება დასრულდეს ექვსი განსხვავებული შედეგით – გაგორდეს "ერთიანი", "ორიანი", "სამიანი", "ოთხიანი", "ხუთიანი" ან "ექვსიანი", თითოეული მათგანი ამ ცდის ხდომილებაა და თუ კამთელი იდეალურია, თითოეულს მათგანის ალბათობა არის 1/6. ამ შემთხვევაში ხდომილებების ალბათობები ფაქტიურად აპრიორი ცნობილია. არატრივიალურ შემთხვევებში ალბათობის თეორია განიხილავს ერთმანეთთან ამა თუ იმ წესით დაკავშირებული ხდომილებებს. (...სრულად)
|
რჩეული ბიოგრაფია
|
კარლ ფრიდრიხ გაუსი (Johann Carl Friedrich Gauß) (* 30 აპრილი, 1777, ბრაუნშვაიგი ― † 23 თებერვალი, 1855, გეტინგენი) — გერმანელი მათემატიკოსი, ასტრონომი, გეოდეზისტი და ფიზიკოსი.
ჯერ კიდევ სიცოცხლის პერიოდში გაუსი "მათემატიკოსთა პრინცის" ტიტულით იყო დაჯილდოებული. გადმოცემის თანახმად, სკოლაში მათემატიკის ერთ–ერთ გაკვეთილზე, მასწავლებელმა ბავშვებს დაავალა გამოეთვალათ ყველა რიცხვთა ჯამი 1–დან 100–მდე. პატარა გაუსმა შეამჩნია, რომ სხვადასხვა ბოლოდან აღებული ყველა წყვილის ჯამი ერთნაირია: 1+100=101, 2+99=101 და ა.შ. და მომენტალურად მიიღო საბოლოო შედეგი – 50×101=5050, რითაც მასწავლებლის გაოცება გამოიწვია.
1796 წელი გაუსისთვისაც და რიცხვთა თეორიისთვის ყველაზე პროდუქტიული წელიწადი იყო. ამ პერიოდში აღმოაჩინა მან ჰეპტადეკაგონის აგების წესი (30 მარტს). ხოლო მისი განთქმული კვადრატული ურთიერთდამოკიდებულების კანონი აღმოაჩინა 8 აპრილს. ეს მარტივი კანონი მათემატიკოსებს საშუალებას აძლევს განსაზღვრონ ნებისმიერი კვადრატული განტოლების ამოხსნადობა მოდულურ არითმეტიკაში. მარტივ რიცხვთა თეორემა, ამოხსნილი 31 მაისს საშუალებას იძლევა განისაზღვროს თუ როგორ არის მარტივი რიცხვები განაწილებული რიცხვთა წრფეზე. (...სრულად)
|
|
|