Senarai momen inersia

From Wikipedia

Penerangan Bentuk Inersia Angular Catatan
Silinder berdinding nipis dan terdapaat bukaan dihujungnya, dengan jejari r \, dan jisim m\, Image:moment_of_inertia_thin_cylinder.png I = m r^2 \,
Silinder tebal dengan bukaan di hujungnya: jejari dalam r_1\,, jejari luar r_2\, dan jisim m\, Image:moment_of_inertia_thick_cylinder.png I = \frac{1}{2} m({r_1}^2 + {r_2}^2)
Silinder solid dengan jejari r\,, tinggi h\, jisim m\, Image:moment_of_inertia_solid_cylinder.png I_z = \frac{1}{2} mr^2
I_x = I_y = \frac{1}{12} m(3r^2+h^2)
Cakera nipis dengan jejari r\, dan jisim m\, Image:moment of inertia disc.png I_z = \frac{1}{2} mr^2
I_x = I_y = \frac{1}{4} m(r^2)
Sfera tumpat dengan jejari r\, dan jisim m\, Image:moment_of_inertia_solid_sphere.png I = \frac{2}{5} mr^2
Sfera yang mempunyai ruang di tengahnya dan jejari r\, dan jisim m\, Image:moment_of_inertia_solid_sphere.png I = \frac{2}{3} mr^2
Kon bersudut tegak dengan jejari r\,, tinggi h\, dan jisim m\, Image:moment_of_inertia_cone.png I_z = (3/10)mr^2 \,\!
I_x = I_y = (3/5)m(r^2/4+h^2) \,\!
Prisma segiempat tumpat dengan tinggi h\,, lebar w\,, dan panjang d\,, dan jisim m\, Image:moment_of_inertia_solid_rectangular_prism.png I_h = \frac{1}{12} m(w^2+d^2)
I_w = \frac{1}{12} m(h^2+d^2)
I_d = \frac{1}{12} m(h^2+w^2)
Rod dengan panjang L\, dan jisim m\, Image:moment_of_inertia_rod_center.png I_{center} = \frac{1}{12} mL^2 Paksi pusingan di tengah-tengah
Rod dengan panjang L\, dan jisim m\, Image:moment_of_inertia_rod_end.png I_{end} = \frac{1}{3} mL^2 Paksi pusingan di hujung

[Sunting] Lihat Juga

Bahasa lain