ค่าสัมบูรณ์

จากวิกิพีเดีย สารานุกรมเสรี

กราฟของฟังก์ชันค่าสมบูรณ์
กราฟของฟังก์ชันค่าสมบูรณ์

ในคณิตศาสตร์ ค่าสัมบูรณ์ (absolute value) (หรือ มอดุลัส (modulus)) ของจำนวน คือ ผลต่างระหว่างจำนวนนั้นกับ 0 พูดง่ายๆคือ จำนวนที่ไม่มีเครื่องหมายลบ ตัวอย่างเช่น 3 คือค่าสัมบูรณ์ของ 3 และ −3

สารบัญ

[แก้] นิยาม

นิยามได้ดังนี้: สำหรับจำนวนจริงใดๆ a, ค่าสัมบูรณ์ของ a เขียนแทนด้วย |a| เท่ากับ a ถ้า a ≥ 0 และเท่ากับ −a ถ้า a < 0 (ดูเพิ่มเติม: อสมการ) |a| จะไม่เป็นจำนวนลบ ค่าสัมบูรณ์จะเป็นจำนวนบวกหรือศูนย์เสมอ นั่นคือจะไม่มีค่า a ที่ |a| < 0

ค่าสัมบูรณ์สามารถถือว่าเป็นระยะทางของจำนวนนั้นจากศูนย์ สัญกรณ์ของระยะทางในคณิตศาสตร์มักเขียนในรูปค่าสัมบูรณ์อยู่เสมอ เมื่อจำนวนจริงถูกพิจารณาเหมือนเป็นเวกเตอร์หนึ่งมิติ ค่าสัมบูรณ์คือขนาด และ p-นอร์มสำหรับ p ใดๆ ที่ตัวประกอบคงที่ ทุกๆนอร์มใน R1 จะเท่ากับค่าสัมบูรณ์: ||x||=||1||.|x|

[แก้] คุณสมบัติ

ค่าสัมบูรณ์มีคุณสมบัติดังนี้

  1. |a| ≥ 0
  2. |a| = 0 ก็ต่อเมื่อ a = 0.
  3. |ab| = |a||b|
  4. |a/b| = |a| / |b| (ถ้า b ≠ 0)
  5. |a+b| ≤ |a| + |b| (อสมการอิงรูปสามเหลี่ยม)
  6. |ab| ≥ ||a| − |b||
  7. \left| a \right| = \sqrt{a^2}
  8. |a| ≤ b ก็ต่อเมื่อ −bab
  9. |a| ≥ b ก็ต่อเมื่อ a ≤ −b หรือ ba

คุณสมบัติสองอันสุดท้าย ใช้ในการแก้อสมการอยู่เสมอ ตัวอย่างเช่น

|x − 3| ≤ 9
−9 ≤ x−3 ≤ 9
−6 ≤ x ≤ 12
(รอเพิ่มเติมเนื้อหา)

[แก้] ค่าสัมบูรณ์และจำนวนเชิงซ้อน

\mbox{if }c = a + bi \mbox{ then }|c| = \sqrt{a^2 + b^2}\,\! (มอดุลัส)

[แก้] ขั้นตอนวิธี

(รอเพิ่มเติมเนื้อหา)


  ค่าสัมบูรณ์ เป็นบทความเกี่ยวกับ คณิตศาสตร์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น
ข้อมูลเกี่ยวกับ ค่าสัมบูรณ์ ในภาษาอื่น สามารถหาอ่านได้จากเมนู ภาษาอื่น ๆ ด้านซ้ายมือ